Versatile Route to Functionalized 1*H*-2-Benzothiopyrans and 1H-2-Naphthothiopyrans by Electrophilic Cyclization of Bis(arylmethylthio)acetylenes: 2-Benzo- and 2-Naphthothiopyrylium Salts

Thomas R. Klein, Marco Bergemann, Nasser A. M. Yehia, and Egon Fanghänel^{*,†}

Department of Chemistry, Martin-Luther-University, Halle-Wittenberg, D-06099 Halle, Germany

Received December 31, 1997

Substituted 1H-2-benzothiopyrans find applications as pharmaceutically active compounds or synthons for more complex sulfur heterocycles. However, restricted variability in their synthesis limits the application for research or industrial purposes. To develop a direct and fast route to substituted and functionalized 1H-2-benzothiopyrans, we investigated the ring closure of symmetrical bis(arylmethylthio)acetylenes with iodine monochloride or bromine. This facile reaction yielded 1H-3-halo-4-arylmethylthio-2-benzo- and 2-naphthothiopyrans via postulated vinyl cations in yields of 47-86%. Substituted 2-benzo- and 2-naphthothiopyrylium salts were prepared by hydride abstraction with triphenylcarbenium tetrafluoroborate from the products, further enhancing the synthetic potential of the found cyclization reaction.

Introduction

1H-2-Benzothiopyrans both show and promise interesting biological properties.¹ They represent a more or less rigid and polarizable ring system,² which should be capable of interacting with receptor proteins like, but different from, the isomeric 2H-1-benzothiopyrans. The latter have already been tested and applied as drugs.³ 1H-2-Benzothiopyrans can be easily converted into isothiochromans in high yields by catalytic reduction.⁴ Certain 1-substituted and 1,1-disubstituted isothiochromans show

(2) Schneller, S. W. Adv. Heterocycl. Chem. 1975, 18, 59.

pharmacological (antitussive, sedative, muscle relaxating, neuroleptic) activity,⁵ as well.

The value of 1H-2-benzothiopyrans as synthons is given by the formation of highly reactive 2-benzothiopyrylium salts with trityl tetrafluoroborate (TrBF₄).⁶ A wide variety of substituted and fused heterocyclic systems can be formed from the 2-benzothiopyrylium salts, for example, by using them as dienophiles in hetero Diels-Alder reactions.⁷

In contrast to the high synthetic and pharmacologic potential of 1H-2-benzothiopyrans, a very limited variability exists for preparation of these compounds.⁸ Our aim was to develop a fast and efficient synthesis that allows a specific substitution pattern of the product by selecting appropriate educts. Symmetric bis(arylmethylthioacetylenes) 2 were chosen as starting material for cyclization due to the ease of preparation and high variability. Electrophilic attack of iodine monochloride and to a limited extent bromine gave 1H-3-halo-4arylmethylthio-2-benzothiopyrans 3 in good yields (47-

[†] Address correspondence to this author at Institute of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; D-06099 Halle. Tel: 0049-3461-462086. Fax: 0049-3461-462080. E-mail: Fanghaenel@ chemie.uni-halle.de.

^{(1) (}a) Antiestrogenic and antifertiliy: Crenshaw, R. R.; Jeffries, A. T.; Luke, G. M.; Cheney, C.; Bialy, G. *J. Med. Chem.* **1971**, *14*, 1185. (b) Antiinflammatories and analgesics: Talley, J. J.; Bertenshaw, S. R.; Graneto, M. J.; Rogier, D. J. WO 9609304; Chem. Abstr. 1971, 75, 114605. (c) Selective COX-2 inhibitors: Bertenshaw, S. R.; Talley, J. T.; Rogier, D. J.; Garneto, M. J.; Koboldt, C. M.; Zhang, Y. Bioorg. Med. Chem. Lett. 1996, 6, 2827. (d) Immunosuppressants: Suzuki, F.; Tsumiki, H.; Nakazato, N.; Sato, S.; Nakajima, H.; Tamura, T. Japan patent 06306079 A2; *Chem. Abstr.* **1995**, *123*, 33049. (e) Anti-cholesteremics: Natsugari, H.; Tawade, H.; Ikeda, H. European patent 481383 A1; Chem. Abstr. 1992, 117, 48326. (f) Antitumors: Attardo, G.; Kraus, J.-L.; Courchesne, M.; Lamonte, S.; Lavallee, J.-F.; Lebeau; E.; Nguyen, D., Rej, R.; St.-Denis, Y.; Wang, W.; Xu, Y.-C., Barbeau, F.; Bellea, B. U.S. patent 5593970 A; *Chem. Abstr.* **1997**, *126*, 199791. (g) Immunosupperssive agents: Magolda, R. L.; Pitts, W. J.; Jacobson, C.; Behrens, C. H.; Orwat, M. J.; Batt, D. G. WO 9506640 A1; Chem. Abstr. 1995, 123, 256538. (h) DNA cleavage: Toshima, K.; Ohta, K.; Ohtsuka, A.; Matsumura, S.; Nakata, M. J. Chem. Soc., Chem. Commun. 1993, 18, 1406.

^{(3) (}a) Antifungal: Nakib, T. A.; Bezjak, V.; Rashid, S.; Fullam, B.; Meegan, M. J. Eur. J. Med. Chem. Chim. Ther. 1991, 26, 221. (b) Antimicrobial: Obi, K.; Saito, T.; Kojima, A.; Fukuda, H.; Hirai, K.; Suzue, S. *J. Antibiot. Tokyo* **1995**, *48*, 274 and 278. (c) Analgesic: Hori, M.; Kataoka, T.; Shimizu, H.; Imai, E.; Iwata, N.; Kawamura, N.; Kurono, M.; Nakano, K.; Kido, M. Chem. Pharm. Bull. Tokyo 1989, 37, 1282. M.; Nakano, K.; Kluo, M. Chem. Phann. Bun. Tokyo 1969, 57, 1262.
 (d) Antikonvulsant and sedative hypnotic: Arnoldi, A.; Bonsignori, A.; Melloni, P.; Merlini, L.; Quadri, M. L.; Rossi, A. C.; Valsecchi, M. J. Med. Chem. 1990, 33, 2865. (e) Platelet antiaggregating: Bargagna, A.; Longobardi, M.; Mariani, E.; Schenone, P.; Losasso, C.; Esposito, G.; Falzarano, C.; Marmo, E. Farmaco 1990, 45, 405. (f) Anticancer (tyrosin protein kinase inhibitor): Geissler, J. F.; Roesel, J. L.; Meyer,
 T.; Trinks, U. P.; Traxler, P.; Lydon, N. B. *Cancer Res.* 1992, *52*, 4492.
 (4) Pulman, A. D.; Whiting, D. A. *J. Chem. Soc., Perkin Trans.* 1

^{1973. 410.}

⁽⁵⁾ See ref 2, p 88.

^{(6) (}a) Spencer, J.; Pfeffer, M.; De Cian, A.; Fischer, J. *J. Org. Chem.* **1995**, *60*, 1005. (b) Shimizu, H.; Miyazaki, S.; Kataoka, T.; Hori, M.; Muraoka, O. J. Chem. Soc., Perkin Trans. 1 1994, 3129.

^{(7) (}a) Condensated heterocycles and 1-substitution: see ref 6b. (b) Shimizu, H.; Miyazaki, S.; Kataoka, T.; Hori, M. J. Chem. Soc., Perkin Trans. 1 1995, 1583. (c) Shimizu, H.; Araki, N.; Muraoka, O.; Tanabe, G. J. Chem. Soc., Chem. Commun. 1996, 18, 2185. (d) Shimizu, H.;
 Miyazaki, S.; Kataoka, T. J. Chem. Soc., Perkin Trans. 1 1996, 2227.
 (e) Shimizu, H.; Miyazaki, S.; Kataoka, T. Tetrahedron 1997, 53, 4611. (f) Complex anelated heterocycles: Shimizu, H.; Yonezawa, T.; Watanabe, T.; Kobayashi, K. Chem. Commun. 1996, 1659.

⁽a) (a) 1-Phenyl-3,4-substituted; from thiobenzophenone, activated acetylenes; 3 days Na_D irradiation, 20-60% yield: Ohno, A.; Koizumi, T.; Ohnishi, Y.; Tsuchihashi, G. *Tetrahedron Lett.* **1970**, 23, 2025. (b) 4-Substituted; from isothiochroman-4-one, Grignard compounds; de-description of the substituted of the substitute of the hydratization, 30% yield: Padwa, A.; Au, A.; Lee, G. A.; Owens, W. J. Org. Chem. **1975**, 40, 1142. (c) 3,4-Substituted; from 2-iodobenzyl *Org. Chem.* **1975**, 40, 1142. (c) 3,4-Substituted; from 2-iodobenzyl chloride, *tert*-butyl-SH, base, Pd(dba)₂, asymmetric substituted acetylenes, AgBF₄, PhCl reflux; 5 steps, 47–54% yield: see ref 6a. (d) 1-Phenyl-3,4-substituted; from thiobenzophenone, activated acetylenes, 61–97% yield: Rapp, J.; Huisgen, R. *Tetrahedron* **1997**, *53*, 961. See also: Ingall, A. H. *Compr. Heterocycl. Chem* **1994**, *3*, 885. Ingall, A. H. *Compr. Heterocycl. Chem*. **1996**, *5*, 501.

 Table 1.
 Symmetrical Bis(arylmethylthio)acetylenes 2 from Arylmethyl Thiocyanates 1

S−C≡N Ar−−′ 1	Na [⊕] C≡C−H - NaCN	S-C=C-H
	Na [⊕] ⊂=C−H - H−C≡C−H	S−C≡CI [⊖] Ar−∕ Na [⊕]
	S−C≡N Ar∕ - NaCN	S−C≡C−S ^{−R} Ar−− ²
substance number	Ar	yield(%)
2a	\sim	89
2b	СН3-	68
2c	сн ₃ о-	74
2d	Br	62
2e		62
2f	()	69

86% isolated). The simple addition of halogen onto the triple bond played no role under the appropriate reaction conditions.

A preliminary description of this new reaction has been given for the unsubstituted starting compound.⁹

Results

Choice and Preparation of Starting Compounds. To test the influence of substituents on the electrophilic ring closure reaction, several symmetric bis(arylmethylthio)acetylenes **2** have been prepared via arylmethyl thiocyanates **1** and sodium acetylide. Commercially available arylmethyl halides yielded thiocyanates **1** nearly quantitatively using the SiO₂-supported, solventfree technique of Kodomari et al.¹⁰ The reaction of the thiocyanates with sodium acetylide in liquid ammonia¹¹ gave acetylenes **2** in 60–90% yields (Table 1). ¹H NMR signals (singlets) of the methylene groups were at 3.79– 3.89 ppm in chloroform-*d* as expected, with the exception of **2d** and **2e** (4.19 ppm; 4.25 ppm). Compounds **2b–f** have not yet been described in the literature and are therefore characterized in detail.

Compounds $2\mathbf{a}-\mathbf{d}$ have been chosen to study the electronic effect of a donor $(2\mathbf{b},\mathbf{c})$ or an acceptor $(2\mathbf{d})$ in the aryl group and of the type of the aromatic system $(2\mathbf{a},\mathbf{e},\mathbf{f})$ on the electrophilic cyclization reaction.

3g

2-naphthyl

I

55

Electrophilic Cyclization of 2a-f with Iodine Monochloride or Bromine. The acetylenes 2 were rapidly converted into 1H-2-benzothiopyrans 3, via a vinyl cation as postulated intermediate, by reaction with equimolar amounts of iodine monochloride or bromine at -70 °C in methanol or methanol/chloroform (Table 2). The products precipitated from the cold reaction mixture. A second fraction could be obtained after neutralization of the filtrate with solid sodium bicarbonate, filtration, removal of the solvent, and recrystallization from ethanol. In general iodine monochloride gave higher yields than bromine. Some acetylenes (2c,e,f) could only be cyclized with iodine monochloride. The structure of the reaction products has been confirmed spectroscopically and by X-ray crystal structure analysis of 3a. The ORTEP plot of **3a** is shown in Figure 1.

Two ¹H NMR signals (singlets) for the methylene groups of **3** were found: for the 4-substituents almost unchanged at 3.66-3.92 ppm in chloroform-*d* (4.28 ppm

⁽⁹⁾ Bergemann, M.; Fanghänel, E. 16th International Symposium on the Organic Chemistry of Sulfur (ISOCS), abstract book, R. 318, poster, Martin-Luther-Universität Halle-Wittenberg 1994, ISBN 3-924763-46-1.

⁽¹⁰⁾ Kodomari, M.; Kuzuoka, T.; Yoshitomi, S. *Synthesis* **1983**, 141. (11) Brandsma, L. *Preparative Acetylenic Chemistry*, reprint of the 2nd ed.; Elsevier: Amsterdam-Oxford-New York-Tokyo, 1992.

Figure 1. ORTEP plot of 3a.

for **3f**) and the ring-methylene group shifted about 0.3 ppm upfield (with the exception of **3g**, where an upfield shift of 0.94 ppm was recorded).

From **2f** two different cyclization products may be formed (Scheme 1). The ¹H NMR spectra of the resulting substance from the reaction of **1f** with iodine monochloride showed 11 signals, which can be predicted for each of the possible isomers alone but not for a mixture of both. Due to the existence of only one singlet in the aromatic region, structure **3g** is likely. The ¹H-¹H COSY spectra of **3g** and the interpretation of all cross-peaks proved the postulated formula (Figure 2, Supporting Information).

Limitations of the new cyclization reaction were seen in the attempt to generate the 1*H*-2-benzothiopyran ring from 2d, which failed (Scheme 2). Instead of ring closure to 3i halogen addition to 5 was observed with bromine. Iodine monochloride yielded a complex reaction mixture from which no cyclization product could be isolated. The electronic effect of the ortho Br substituent made the stabilization of the postulated vinyl cation by intramolecular substitution less favorable and the intermolecular addition of a nucleophile more so. The isolated addition product 5 showed high selectivity toward one of the possible E/Z isomers as deduced from the ¹H NMR signal of the methylene group (4.19 ppm, 95%; 4.08 ppm, 5%). Most probably the E isomer was formed in excess, because bromine is known to prefer anti over syn addition if an ionic mechanism is involved.¹²

Conversion of 3 into Thiopyrylium Salts 4. To extend the synthetic variability of the ring closure products, 3a-g were treated with TrBF₄ in dry CH₂Cl₂ (or CH₂Cl₂/CH₃NO₂). TrBF₄ acts as hydride extractor,¹³ forming triphenylmethane and the desired 2-benzothiopyrylium salts 4. All compounds 3 investigated except 3g provided the salts 4 in yields between 37% and 85% yields (Table 3). In the case of 3g the starting material was recovered unchanged, possibly by sterical hindrance of the hydride abstraction by the bulky tritylium cation.

The salts **4** were deeply colored (λ_{max} in CH₃CN, 422– 450 nm; $\epsilon = 1300-8800$ l/mol cm) hydrolysis-sensitive crystals, which were stored in a desiccator. The ¹H NMR signal (singlet) of the methylene group of the substituent was shifted downfield to 4.26 ppm (**4a**, CDCl₃) and 4.19– 4.72 ppm (**4b**,**c**,**e**,**f**, CD₃CN). The disappearance of the singlet of the ring-methylene group and a new resonance at 10.08–10.93 ppm (singlet) confirmed the formation of the thiopyrylium salt.

Discussion

1*H*-2-Benzothiopyrans **3**, which are important for their use as synthons and pharmacologically active compounds, could be obtained in good yields in a flexible and easy reaction from bis(arylmethylthio)acetylenes **2**. The preparation of the acetylenes was achieved by modifying standard reactions using commercial arylmethyl halides as starting material and proceeded without difficulties.

The electrophilic addition of halogens to acetylenes is normally catalyzed by Lewis acids and yields (*E*)-1,2dihaloalkenes stereoselectively.¹² In polar solvents the stabilization of polar intermediates and transition states could also be expected in the absence of catalysts. In this way the preformed cations (X = iodonium, bromonium) attack the electron rich triple bond of **2** by forming a vinyl

^{(12) (}a) Houben-Weyl Methoden der organischen Chemie, 4th ed.;
Georg Thieme Verlag: Stuttgart, 1960; Vol. V/4, pp 92–95. (b)
Al-Hassan, M. I. J. Organomet. Chem. 1989, 372, 183. (c) König, J.;
Wolf, V. Tetrahedron Lett. 1970, 19, 1629. (d) Schmid, G. H.; Modro,
A.; Yates, K. J. Org. Chem. 1980, 45, 665.
(13) (a) Dauben, H. J.; Gadecki, F. A.; Harmon, K. M.; Pearson, D.

^{(13) (}a) Dauben, H. J.; Gadecki, F. A.; Harmon, K. M.; Pearson, D. L. *J. Am. Chem. Soc.* **1957**, *79*, 4558. (b) Bonthrone, W. Reid, D. H. *J. Chem. Soc.* **1959**, 2773.

cation which can react with nucleophiles/anions to equilibrate its charge. Because of the reduced nucleophilicity of the halogen anions (Y = chloride, bromide) in methanol, which is due to strong hydrogen bonding, the vinyl cation attacks intramolecularly the aromatic π -system forming a σ -complex and finally the 1*H*-2-benzothiopyran ring. This reaction corresponds to the intramolecular formation of indenes via a benzyl vinyl cation¹⁴ as an intermediate. It is furthermore plausible that vinyl cations **6** were stabilized by electronic interaction with the nucleophilic, easily polarizable sulfur (Scheme 3).

The bridged structure **6c** is expected to be the most stable.¹⁵ Low concentration of the acetylene, low temperatures, and slow addition of the halogen favored the intramolecular course of reaction. Higher reactivity and larger yields were observed with iodine monochloride as compared to bromine due to the strongly polarized bond between the two halogens in iodine monochloride. Some acetylenes (**2c**,**e**,**f**) reacted only with this reagent. The proposed mechanism (Table 2) is in agreement with the superiority of iodine monochloride over bromine in the reaction described.

From the two possible cyclization products of **2f**, only **3g** was found. This high selectivity of ring closure toward the 1- and not the 3-position of the 2-substituted naph-thalene ring corresponds to the favored electrophilic substitution of the 1-position of naphthalene under kinetic control.

No ring closure but *trans* addition of halogen onto the triple bond was found in case of acetylene **2d**. The *ortho*

Br substitution of the benzene ring blocked one of two *ortho* positions (statistical factor) and deactivated the aromatic ring for electrophilic substitution. Therefore, the addition of bromide is favored in comparison to intramolecular cyclization.

The potential of the ring closure reaction previously described has not been exploited totally with the use of iodine monochloride or bromine as electrophiles and the symmetric bis(arylmethylthio)acetylenes as educts. Both directions, that is, other electrophiles and different substitution patterns of the educts (especially unsymmetrical acetylenes **2** and bis(arylmethylseleno)acetylenes) will be followed by the authors. The halogen in the 3-position of the 2-benzothiopyran ring in **3** opens the way to further derivatization and intramolecular cyclization to fused sulfur heterocycles.

Conclusion

We have shown that substituted 1H-2-benzothiopyrans **3** with a new substitution pattern were readily accessible by electrophilically induced ring closure of acetylenes **2**. The synthetic versatility of **3** was demonstrated by their conversion into 2-benzo- and 2-naphthothiopyrylium salts **4** with TrBF₄. Compounds **3** and **4** open routes for synthesizing fused heterocycles and for potential applications in medicine and in material science.

Experimental Section

Melting points were determined on a micro melting point apparatus and are corrected. NMR spectra at 300 MHz (¹H) and 75 MHz (¹³C) were obtained in CDCl₃ (**1**, **2**, **3**, **4a**) and in CD₃CN (**4b**,**c**,**e**,**f**), respectively (ppm; ¹³C off-resonance), with TMS as internal standard unless stated otherwise. UV–vis absorptions are given as [λ in nm (ϵ in L/mol cm)]. All elemental analyses reported were averaged from two independent determinations. HPLC analysis was performed with CH₃CN (no gradient) on an RP-18 column connected to a UV array detector. The peak area for accumulated absorption in the range of 210–370 nm was utilized as a purity criterion. For the described compounds of type **1**, **2**, and **3**, a purity of more than 98% was determined.

Arylmethyl halides, potassium thiocyanate, and iodine monochloride and bromine used were obtained from commercial sources. Ammonia and acetylene of highest commercial purity from gas cylinders were purified/washed as described in the individual experiments.

^{(14) (}a) Maroni, R.; Melloni, G. Tetrahedron Lett. **1972**, 2869. (b) Marcuzzi, F.; Melloni, G. Tetrahedron Lett. **1975**, 2771.

⁽¹⁵⁾ Hanack, M. Angew. Chem. 1978, 90, 346; Angew. Chem., Int. Ed. Engl. 1978, 17, 333.

General Procedure: Arylmethyl Thiocyanates 1 from Arylmethyl Halides. SiO₂-supported active KSCN (75 mmol), prepared as described by Kodomari,¹⁰ was placed in a 100 mL Erlenmeyer flask and the arylmethyl halide (25 mmol) was added. If the latter was a solid at room temperature, the flask was immersed into a steam bath until all arylmethyl halide was liquified and absorbed. The flask was placed in the dark for 16 h and shaken from time to time. The product was extracted with toluene and filtered to remove all solids, and the toluene was evaporated. The pure thiocyanate was isolated in near quantitative yield.

Benzyl thiocyanate (1a): 3.35 g from 3.16 g (25 mmol) of benzyl chloride (90%); clear, odorless crystals, mp 39-40 °C (39.4 °C¹⁶).

4-Methylbenzyl thiocyanate (1b): 3.84 g from 3.51 g (25 mmol) of 4-methylbenzyl chloride (93%); clear, odorless liquid, bp 151 °C/20 mbar (110–112 °C/6 Torr,¹⁷ 148–150 °C/14 Torr¹⁷).

4-Methoxybenzyl thiocyanate (1c): 2.20 g from 1.96 g (12.5 mmol) of 4-methoxybenzyl chloride (98%); slightly yellow liquid with anise-like smell, bp 134 °C/1 mbar (135–139 °C/ 0.7 Torr¹⁸).

2-Bromobenzyl thiocyanate (1d): 5.40 g from 6.25 g (25 mmol) of 1-bromobenzyl bromide (96%); slightly brownish liquid with pungent odor, bp 113 °C/0.1 mbar, $n^{20}{}_{\rm D}$ = 1.6102; ¹H NMR δ 4.23 (s, 2H), 7.21 (d, 1H, 7.5 Hz), 7.33 (t, 1H, 7.4 Hz), 7.41 (t, 1H, 8.6 Hz), 7.61 (d, 1H, 8.0 Hz). Anal. Calcd for C₈H₆BrNS: C, 42.12; H, 2.65; S, 14.05; N, 6.14; Br, 35.03. Found: C, 42.20; H, 2.80; S, 14.29; N, 6.48; Br, 32.11.

1-Naphthylmethyl thiocyanate (1e): 2.59 g from 2.18 g (12.5 mmol) of 1-chloromethylnaphthalene (99%); clear, odorless crystals, mp 91 °C (91–91.5 °C¹⁷).

2-Naphthylmethyl thiocyanate (1f): 2.46 g from 2.74 g (12.5 mmol) of 2-bromomethylnaphthalene (95%); clear, odorless crystals, mp 101 °C (101–101.5 °C¹⁹).

General Procedure: Symmetric Bis(arylmethylthio)acetylenes 2 from Arylmethyl Thiocyanates 1. Ammonia (dried by passing through a KOH-filled column) was liquified (10 mL) under an argon atmosphere using a reflux condenser filled with solid CO₂ and ethanol. After sodium (575 mg; 25 mmol) was added, acetylene gas (passed through H₂SO₄ and an active carbon filter) was bubbled into the deep blue solution until the color disappeared. Dry CH₂Cl₂ (2 mL) was added, and by stirring, a concentrated solution of the thiocyanate (20 mmol) in CH₂Cl₂ was slowly introduced through a dropping funnel. After stirring was continued for 30 min and the ammonia evaporated, 3 mL of CH₂Cl₂ followed by 20 mL of H₂O was added to dissolve all solids. The phases were separated, and the water layer was extracted with CH₂Cl₂ (3 \times 12 mL). It now contained only NaCN, which was destroyed with alkaline H₂O₂. The unified organic phases were washed with water and dried and the solvent removed. The products were pure after recrystallization from diethyl ether.

Bis(benzylthio)acetylene (2a): 12.0 g from 15.0 g (100 mmol) of benzyl thiocyanate **1a** (89%); clear crystals, mp (ethanol) 54 °C (54 °C¹⁷); ¹H NMR δ 3.80 (s, 4H), 7.25 (m, 10H); ¹³C NMR δ 41.42, 87.95, 127.59, 128.46, 129.04, 136.46; UV-vis (CH₃CN) 228 (20 100). Anal. Calcd for C₁₆H₁₄S₂: C, 71.07; H, 5.22; S, 23.71. Found: C, 71.43; H, 5.55; S, 23.73.

Bis(4-methylbenzylthio)acetylene (2b): 1.96 g from 3.26 g (20 mmol) of 4-methylbenzyl thiocyanate **1b** (68%); flat, clear crystals, mp (ethanol) 78.5 °C; ¹H NMR δ 2.33 (s, 6H), 3.82 (s, 4H), 7.13 (s, 8H); ¹³C NMR δ 21.09, 41.23, 87.93, 128.90, 129.13, 133.38, 137.25; UV–vis (CH₃CN) 231 (29 300). Anal. Calcd for C₁₈H₁₈S₂: C, 72.48; H, 6.04; S, 21.48. Found: C, 72.15; H, 5.84; S, 21.68.

Bis(4-methoxybenzylthio)acetylene (2c): 1.49 g from 2.15 g (12 mmol) of 4-methoxybenzyl thiocyanate **1c** (74%);

orange plates, mp (ethanol) 81–82 °C; ¹H NMR δ 3.79 (s, 6H), 3.82 (s, 4H), 6.85 (d, 4H, 8.6 Hz), 7.18 (d, 4H, 8.6 Hz); 13 C NMR δ 41.02, 55.20, 87.98, 113.90, 128.48, 130.21, 159.12; UV–vis (CH₃CN) 239 (28 900). Anal. Calcd for C₁₈H₁₈S₂O₂: C, 65.45; H, 5.46; S, 19.39. Found: C, 64.99; H, 5.40; S, 19.76.

Bis(2-bromobenzylthio)acetylene (2d): 2.35 g from 2.0 g (8.9 mmol) of 2-bromobenzyl thiocyanate **1d** (62%); clear crystals, mp (ethanol) 80 °C; ¹H NMR δ 3.91 (s, 4H), 7.11 (d, 8H, 7.1 Hz), 7.18 (d, 4H, 7.3 Hz), 7.52 (d, 4H, 7.6 Hz); ¹³C NMR δ 41.66, 88.25, 124.42, 127.28, 129.29, 131.42, 132.96, 135.61; UV–vis (CH₃CN) 233 (19 800). Anal. Calcd for C₁₆H₁₂S₂Br₂: C, 44.88; H, 2.82; S, 14.97; Br, 37.22. Found: C, 44.85; H, 3.06; S, 15.03; Br, 37.35.

Bis(1-naphthylmethylthio)acetylene (2e): 1.38 g from 2.39 g (12 mmol) of 1-naphthylmethyl thiocyanate **1e** (62%); yellow crystals, mp (ethanol) 76–79 °C; ¹H NMR δ 4.25 (s, 4H), 7.18 (d, 2H, 6.9 Hz), 7.31 (t, 2H, 7.6 Hz), 7.52 (m, 4H), 7.78 (d, 2H, 8.1 Hz), 7.87 (d, 2H, 9.0 Hz), 8.01 (d, 2H, 7.6 Hz); ¹³C NMR δ 39.19, 88.87, 123.56, 125.04, 125.80, 126.20, 128.12, 128.65, 128.76, 131.10, 131.65, 133.83; UV–vis (CH₃CN) 287 (17 500). Anal. Calcd for C₂₄H₁₈S₂: C, 77.80; H, 4.90; S, 17.31. Found: C, 77.55; H, 5.11; S, 17.58.

Bis(2-naphthylmethylthio)acetylene (2f): 2.39 g from 3.70 g (19 mmol) of 2-naphthylmethyl thiocyanate **1f** (69%); yellow crystals, mp (ethanol) 128–129 °C; ¹H NMR δ 3.89 (s, 4H), 7.32 (d, 2H), 7.47 (t, 4H), 7.55 (s, 2H), 7.77 (m, 6H); ¹³C NMR δ 41.67, 88.27, 126.01, 126.20, 126.84, 127.65, 127.76, 128.04, 128.29, 132.71, 133.15, 133.70; UV–vis (CH₃CN) 263 (sh) (15 600). Anal. Calcd for C₂₄H₁₈S₂: C, 77.80; H, 4.90; S, 17.31. Found: C, 77.24; H, 5.18; S, 17.41.

General Procedure: 1*H*-2-Benzothiopyrans 3 from Bis(arylmethylthio)acetylenes 2. Acetylene 2 (1 mmol) was dissolved in 2 mL of CHCl₃, and 8 mL of CH₃OH was added. The suspension was cooled to -70 °C, and by stirring, the halogen (Br₂ or ICl; 1.1 mmol) in 1 mL of CHCl₃ was slowly added. Stirring was continued for 10 min at -70 °C. After the solution was warmed to room temperature, all solids were dissolved. When the solution was immersed into solid CO₂/ ethanol, most of the product precipitated and was filtered. A second fraction was obtained by neutralization with solid NaHCO₃, removal of the solvents at low temperatures (35 °C), and purification of the dark residue by precipitation from CH₂-Cl₂ with cyclohexane. The products were pure after one or two recrystallizations from ethanol.

1*H***·3**·**Íodo-4-benzylthiobenzothiopyran (3a):** 279 mg from 270 mg (1 mmol) of **2a** (84%); slightly yellow needles, mp (ethanol) 81.0 °C; ¹H NMR δ 3.49 (s, 2H), 3.84 (s, 2H), 7.20 (m, 8H), 7.92 (d, 1H, 8.0 Hz); ¹³C NMR δ 35.78, 39.66, 97.09, 126.48, 127.01, 127.16, 127.84, 128.11, 128.47, 129.08, 130.41, 132.24, 135.06, 136.72; UV–vis (CH₂Cl₂) 253 (14 400), 337 (6900); (CH₃CN) 250 (13 200), 337 (6580); EI-MS *m*/*z* (relative intensity) 396 (M⁺, 100), 305 (C₉H₆S₂I⁺, 22), 269 (C₁₆H₁₃S₂⁺, 12), 178 (C₉H₆S₂⁺, 58), 91 (C₇H₇⁺, 59). Anal. Calcd for C₁₆H₁₃S₂I: C, 48.49; H, 3.31; S, 16.18. Found: C, 48.74; H, 3.86; S, 16.20.

1H-3-Bromo-4-benzylthiobenzothiopyran (3b): 245 mg from 270 mg (1 mmol) of **2a** (70%); clear needles, mp (ethanol) 59.5 °C; ¹H NMR δ 3.55 (s, 2H), 3.83 (s, 2H), 7.18 (m, 8H), 7.88 (d, 1H); ¹³C NMR δ 34.72, 39.12, 123.37, 126.38, 127.05, 127.16, 127.82, 128.17, 128.35, 129.04, 130.10, 130.18, 133.43, 136.97; UV–vis (CH₂Cl₂) 248 (14 000), 332 (7200); (CH₃CN) 332 (5000); EI-MS *m/z* (relative intensity) 349 (M⁺, 57), 269 (C₁₆H₁₃S₂⁺, 9), 258 (C₉H₆S₂Br⁺, 14), 178 (C₉H₆S₂⁺, 50), 91 (C₇H₇⁺, 100). Anal. Calcd for C₁₆H₁₃S₂Br: C, 55.02; H, 3.95; S, 18.36; Br, 22.88. Found: C, 55.20; H, 4.38; S, 18.16; Br, 22.46.

1*H***·3**-**Iodo-4**-(**4**-**methylbenzylthio**)-**6**-**methylbenzothiopyran (3c)**: 303 mg from 298 mg (1 mmol) of **2b** (71%); clear needles, mp (ethanol) 67.7 °C; ¹H NMR δ 2.30 (s, 3H), 2.39 (s, 3H), 3.51 (s, 2H), 3.81 (s, 2H), 7.01 (m, 6H), 7,71 (s, 1H); ¹³C NMR δ 21.09, 21.29, 35.61, 39.60, 96.87, 126.36, 127.66, 127.93, 128.83, 128.97, 129.07, 132.16, 133.82, 135.33, 136.64, 137.50; UV-vis (CH₃CN) 250 (12 600), 335 (4300); EI-MS *m/z* (relative intensity) 424 (M⁺, 53), 297 (C₁₈H₁₇S₂⁺, 7), 264 (C₁₈H₁₆S⁺, 14), 192 (C₁₀H₈S₂⁺, 16), 148 (C₉H₈S⁺, 8), 105 (C₈H₉⁺,

⁽¹⁶⁾ Barbaglia, G. A. Ber. Dtsch. Chem. Ges. 1872, 5, 687.

⁽¹⁷⁾ U.S. Patent 2,394,915, 1946; Chem. Abstr. 1946, 41, 2261-9.

⁽¹⁸⁾ Tamura, Y.; Kawasaki, T.; Adachi, M.; Tanio, M.; Kita, Y. Tetrahedron Lett. **1977**, *50*, 4417.

⁽¹⁹⁾ Bacon, R. G. R.; Guy, R. G.; Irwin, R. S. J. Chem. Soc. 1961, 2436.

100). Anal. Calcd for $C_{18}H_{17}S_2I$: C, 50.94; H, 4.01; S, 15.09. Found: C, 50.69; H, 4.21; S, 15.15.

1H3-Bromo-4-(4-methylbenzylthio)-6-methylbenzothiopyran (3d): 89 mg from 149 mg (0.5 mmol) of **2b** (47%); clear crystals, mp (ethanol) 79–80 °C; ¹H NMR δ 2.30 (s, 3H), 2.39 (s, 3H), 3.59 (s, 2H), 3.81 (s, 2H), 6.99 (m, 6H), 7.66 (s, 1H); ¹³C NMR δ 20.96, 21.17, 34.38, 38.87, 123.17, 126.36, 127.31, 127.92, 128.92, 128.95, 128.98, 130.41, 133.28, 134.08, 136.71, 137.53; UV–vis (CH₃CN) 248 (16 500), 331 (7800). Anal. Calcd for C₁₈H₁₇S₂Br: C, 57.29; H, 4.54; S, 16.99. Found: C, 57.66; H, 4.78; S, 17.32.

1H3-Iodo-4-(4-methoxybenzylthio)-6-methoxybenzothiopyrane (3e): 1.16 g from 1.0 g (3 mmol) of **2c** (84%); clear crystals, mp (ethanol) 97.5 °C; ¹H NMR δ 3.50 (s, 2H), 3.76 (s, 3H), 3.81 (s, 2H), 3.82 (s, 3H), 6.73 (d, 2H, 8.5 Hz), 6.82 (d, 1H, 8.2 Hz), 6.97 (s, 1H), 6.98 (d, 2H, 8.4 Hz), 7.49 (d, 1H, 2.5 Hz); ¹³C NMR δ 35.36, 39.22, 55.24, 55.47, 97.99, 113.04, 113.56, 113.88, 122.77, 127.48, 128.86, 130.18, 133.42, 135.07, 158.62, 159.35; UV–vis (CH₃CN) 228 (32 800), 253 (16 600), 320 (6500), 334 (5800); EI-MS *m*/*z* (relative intensity) 455 (M⁺, 100), 330 (C₁₈H₁₇S₂⁺, 7), 264 (C₁₈H₁₇S₂O₂⁺, 48), 208 (C₁₀H₈S₂O⁺, 22), 121 (C₈H₉O⁺, 100). Anal. Calcd for C₁₈H₁₇S₂O₂I: C, 47.37; H, 3.75; S, 14.05. Found: C, 47.52; H, 3.70; S, 14.54.

1H-3-Iodo-4-(1-naphthylmethylthio)naphtho[1,2-*c*]**thiopyran (3f):** 158 mg from 185 mg (0.5 mmol) of **2e** (63%); yellow crystals, mp (ethanol) 167.5–168.5 °C; ¹H NMR δ 3.92 (s, 2H), 4.28 (s, 2H), 6.90 (d, 1H), 7.17 (t, 1H), 7.45 (m, 2H), 7.54 (m, 2H), 7.68 (d, 1H), 7.80 (m, 2H), 7.87 (d, 1H), 7.96 (d, 1H), 8.10 (t, 1H), 8.19 (d, 1H); ¹³C NMR δ 30.56, 37.71, 97.75, 123.31, 124.09, 124.76, 125.35, 125.73, 126.01, 126.04, 126.73, 127.45, 127.54, 127.65, 128.26, 128.61, 128.66, 129.57, 130.72, 131.50, 132.14, 132.40, 133.57, 133.77; UV–vis (CH₃CN) 245 (sh) (12 100), 288 (8170), 363 (2860); EI-MS *m*/*z* (relative intensity) 496 (M⁺, 95), 369 (C₂₄H₁₇S₂⁺, 12), 336 (C₂₄H₁₆S⁺, 33), 254 (I₂⁺, 6), 227 (C₁₃H₇S₂⁺, 13), 184.5 (C₂₄H₁₇S₂²⁺, 9), 141 (C₁₁H₉⁺, 100). Anal. Calcd for C₂₄H₁₇S₂I: C, 58.07; H, 3.45; S, 12.92. Found: C, 58.12; H, 3.63; S, 13.04.

1H-3-Iodo-4-(2-naphthylmethylthio)naphtho[**2**,1-*c*]**thiopyran (3g):** 275 mg from 370 mg (1 mmol) of **2f** (55%); yellow crystals, mp (ethanol) 106–108 °C; ¹H NMR δ 2.95 (s, 2H), 3.66 (s, 2H), 6.71 (s, 1H), 7.04 (d, 1H), 7.17 (d, 1H), 7.39 (m, 2H), 7.55 (m, 4H), 7.72 (m, 1H), 7.78 (d, 1H), 7.86 (d, 1H), 9.03 (d, 1H); ¹³C NMR δ 37.83, 39.95, 95.63, 124.24, 125.72, 125.98, 126.14, 126.98, 127.50, 127.74, 128.37, 129.20, 132.24, 132.59, 133.53, 133.95, 134.09, 135.43; UV-vis (CH₃CN) 250 (sh) (27 300), 363 (5890); EI-MS *m*/*z* (relative intensity) 496 (M⁺, 18), 369 (C₂₄H₁₇S₂⁺, 5), 336 (C₂₄H₁₆S⁺, 12), 254 (I₂⁺, 6), 227 (C₁₃H₇S₂⁺, 8), 192 (IS₂H⁺, 30), 141 (C₁₁H₉⁺, 54), 91 (C₇H₇⁺, 100). Anal. Calcd for C₂₄H₁₇S₂!: C, 58.07; H, 3.45; S, 12.92. Found: C, 58.08; H, 3.67; S, 12.99.

General Procedure: 2-Benzothiopyrylium Salts 4 by Hydride Abstraction with TrBF₄ from Benzothiopyrans 3. 3 (0.5 mmol) was dissolved in 1 mL of dry CH_2Cl_2 and added in one portion to a solution of $TrBF_4^{20}$ (231 mg; 0.7 mmol) in 2 mL of CH_2Cl_2 . The resulting dark liquid was stirred for 30 min and then poured into the 3-fold volume of dry diethyl ether with vigorous stirring. The formed solid was collected, washed twice with diethyl ether, and dried in a vacuum desiccator. Every step was carried out under argon and with exclusion of moisture. If necessary, recrystallization was possible in acetic anhydride with some loss of material (incomplete precipitation).

1*H***·3·10do·4·benzylthiobenzothiopyrylium tetrafluoroborate (4a):** 135 mg from 199 mg (0.5 mmol) of **3a** (47%); orange powder, mp >155 °C (dec); ¹H NMR δ 4.26 (s, 2H), 7.03 (d, 1H), 7.14 (d, 2H), 7.27 (d, 2H), 8.17 (t, 1H), 8.42 (t, 1H), 8.51 (d, 1H), 9.03 (d, 1H), 10.66 (s, 1H); UV–vis (CH₃CN) 276 (14 000), 324 (sh) (5200), 436 (2600); IR (KBr) ν_{max} 1066 cm⁻¹ (BF₄⁻). Anal. Calcd for C₁₆H₁₂S₂I⁺BF₄⁻: C, 39.84; H, 2.70; S, 13.28. Found: C, 39.86; H, 2.91; S, 13.23.

1H-3-Bromo-4-benzylthiobenzothiopyrylium tetrafluoroborate (4b): 97 mg from 175 mg (0.5 mmol) of 3b (37%); orange powder, mp >95 °C (dec); ¹H NMR δ 4.28 (s, 2H), 7.06 (d, 2H, 4.7 Hz), 7.13 (d, 1H, 2.6 Hz), 7.27 (m, 2H), 8.18 (t, 1H), 8.45 (t, 1H), 8.56 (d, 1H, 8.2 Hz), 9.03 (d, 1H, 8.6 Hz), 10.58 (s, 1H); UV–vis (CH₃CN) 254 (9300), 273 (7900), 320 (4200), 436 (1360); IR (KBr) $\nu_{\rm max}$ 1061 cm⁻¹ (BF₄⁻). Anal. Calcd for C₁₆H₁₂S₂Br⁺BF₄⁻: C, 44.07; H, 3.00; S, 14.70; Br, 18.30. Found: C, 44.59; H, 3.21; S, 14.46; Br, 18.25.

1*H***·3-Iodo-4-(4-methylbenzylthio)-6-methylbenzothiopyrylium tetrafluoroborate (4c):** 46 mg from 62 mg (0.15 mmol) of **3c** (61%); yellow crystals, mp > 148 °C (dec); ¹H NMR δ 2.19 (s, 3H), 2.68 (s, 3H), 4.19 (s, 2H), 6.88 (s, 4H), 7.98 (d, 1H, 8.3 Hz), 8.37 (d, 1H, 8.4 Hz), 8.68 (s, 1H), 10.47 (s, 1H); UV-vis (CH₃CN) 220 (24 700), 280 (18 600), 334 (5900), 434 (2700); EI-MS *m*/*z* (relative intensity) 423 (M – BF₄⁺, 25), 297 (C₁₈H₁₆S₂⁺, 5), 105 (C₈H₉⁺, 100); IR (KBr) ν_{max} 1060 cm⁻¹ (BF₄⁻). Anal. Calcd for C₁₈H₁₆S₂¹⁺BF₄⁻⁻: C, 42.38; H, 3.16; S, 12.57. Found: C, 41.95; H, 3.06; S, 12.33.

1H-3-Iodo-4-(4-methoxybenzylthio)-6-methoxybenzothiopyrylium tetrafluoroborate (4e): 42 mg from 60 mg (0.13 mmol) of **3e** (60%); yellow crystals, mp > 143 °C (dec); ¹H NMR δ 3.67 (s, 3H), 4.17 (s, 2H), 4.23 (s, 3H), 6.66 (d, 2H, 8.3 Hz), 6.94 (d, 2H, 8.3 Hz), 7.63 (d, 1H, 9.1 Hz), 8.24 (s, 1H), 8.37 (d, 1H, 9.1 Hz), 10.09 (s, 1H); UV-vis (CH₃CN) 232 (22 200), 281 (24 200), 306 (14 300), 371 (7900), 421 (6800); EI-MS *m/z* (relative intensity) 455 (M – BF₄⁺, 55), 329 (C₁₈H₁₆S₂O₂⁺, 33), 254 (C₁₂H₁₂S₂O₂⁺, 60), 121 (C₈H₉O⁺, 100); IR (KBr) ν_{max} 1033 cm⁻¹ (BF₄⁻). Anal. Calcd for C₁₈H₁₆S₂O₂I⁺BF₄⁻: C, 39.88; H, 2.97; S, 11.83. Found: C, 39.90; H, 3.36; S, 11.75.

1H-3-Iodo-4-(1-naphthylmethylthio)naphtho[**1**,**2**-*c*]**thiopyrylium tetrafluoroborate (4f):** 41 mg from 41 mg (0.08 mmol) of **3f** (85%); bright orange powder, mp >185 °C (dec); ¹H NMR δ 4.72 (s, 2H), 6.81 (d, 1H, 6.9 Hz), 7.00 (t, 1H, 7.7 Hz), 7.49 (m, 2H), 7.59 (d, 1H, 8.3 Hz), 7.70 (d, 1H, 7.6 Hz), 8.08 (m, 3H), 8.21 (d, 1H, 7.5 Hz), 8.45 (d, 1H, 9.3 Hz), 8.66 (d, 1H, 9.3 Hz), 8.80 (d, 1H, 8.0 Hz), 10.93 (s, 1H); UV-vis (CH₃CN) 285 (28 900), 450 (8800); IR (KBr) ν_{max} 1054 cm⁻¹ (BF₄⁻). Anal. Calcd for C₂₄H₁₆S₂I⁺BF₄⁻: C, 49.51; H, 2.77; S, 11.01. Found: C, 49.95; H, 2.33; S, 11.02.

Reaction between Bis(2-bromobenzylthio)acetylene (2d) and Halogens: Formation of 1,2-Bis(2-bromobenzylthio)-1,2-dibromoethylene (5). Following the general procedure for the preparation of benzothiopyrans 3 (see above), to 1 mmol of 2d (584 mg) was added an equimolar amount of ICl or Br_2 . Only educt and a mixture of decomposition products could be isolated from the reaction with ICl. With bromine, 208 mg (28%) of a new compound was formed. The analytical data confirm the formation of the addition product 1,2-bis(2-bromobenzylthio)-1,2-dibromoethylene 5 and not the corresponding benzothiopyran 3i.

5: clear crystals; mp (ethanol) 75–77 °C; ¹H NMR δ 4.14 (s, 4H), 7.12 (t, 2H, 6.9 Hz), 7.22 (t, 2H, 7.4 Hz), 7.30 (d, 2H, 7.3 Hz), 7.54 (d, 2H, 7.8 Hz); EI-MS *m/z* (relative intensity) 585 (M⁺, 65), 426 (M – Br₂⁺ = C₁₆H₁₂S₂Br₂⁺, 7), 337 (C₉H₆S₂-Br₂⁺, 71), 258 (C₉H₆S₂Br⁺, 44), 170 (C₇H₆Br⁺, 100), 89 (C₇H₆⁺, 16). Anal. Calcd for C₁₆H₁₂S₂Br₄: C, 32.68; H, 2.68; S, 10.90; Br, 54.36. Found: C, 33.07; H, 2.20; S, 11.03; Br, 53.91.

Acknowledgment. The authors thank Dr. Baumeister and Professor Dr. Hartung, Martin-Luther-University Halle-Wittenberg, Institute of Physical Chemistry, for carrying out the X-ray crystal structure analysis shown in Figure 1. Thomas R. Klein thanks the Studienstiftung des deutschen Volkes and Nasser A. M. Yehia the Deutscher Akademischer Austauschdienst (DAAD) for financial support.

Supporting Information Available: ${}^{1}H{}^{-1}H$ COSY spectra of **3g** with interpretation of the aromatic cross-peaks (Figure 2). Further X-ray crystal structure data for **3a** (9 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO972334L

⁽²⁰⁾ Organic Syntheses, Wiley: New York, 1988; Collect. Vol. 6; p 997.